Using satellite thermal infrared imagery to study boundary layer structure in an Antarctic katabatic wind region

first_imgWe use snow surface temperatures obtained from thermal infrared (TIR) satellite imagery, together with radiosonde profiles of free-air temperature and high-resolution topographic data to study the thermal structure of the atmospheric boundary layer in a coastal region ofEast Antarctica. Surface temperatures over a coastal ice shelf are shown to be significantly lower than those observed on the lower part of the adjoining coastal slopes as a result of the strong surface temperature inversion that forms over the ice shelf. Between 400 and 1500 m elevation the surface temperature lapse rate is close to the dry adiabatic value while the free-air temperature profile is significantly stable over this height range. We argue that this implies that the strength of the surface inversion increases with increasing elevation. Above 1500 m the surface temperature lapse rate becomes significantly superadiabatic and the coldest surface temperatures are found a few 10s of kilometres inland of the highest topography. The technique may prove useful for studying boundary layer structure in other regions of Antarctica where suitable high-resolution topographic data are available.last_img

Leave a Reply